Office of
Science

Status of the Patatrack use case

Mark Dewing (ANL), Julien Esseiva (LBNL), Matti Kortelainen (FNAL)
HEP-CCE All Hands Meeting
11 October 2022

Introduction

» Patatrack

— A frozen, standalone version of CMS heterogeneous pixel track and vertex reconstruction
« “End-to-end”, with mock framework and build system
— Current status

Implementations Completed

CPU | CUDA HIP Kokkos | Alpaka |std::par| SYCL | OpenMP -
: (original) (by CERN (by CERN
Serlal team) Not started
NVIDIA Eigen does
not support
AMD Crashes
randomly
Intel Does not
compile (Eigen)
CPU Serial, POSIX Serial, TBB
threads

2% Fermilab

2 10/11/22 Matti Kortelainen | Status of the Patatrack use case

https://github.com/cms-patatrack/pixeltrack-standalone/

: :
Introduction (reminder) < RecHits D Tracks = Verties

Clusters

Arrows denote data
Origin in CUDA implementation of CMS pixel detector reconstruction dependencies

from raw data up to tracks and vertices (arXiv:2008.13461)

— Extracted into standalone repository from CMSSW
https://github.com/cms-patatrack/pixeltrack-standalone/

* Mimics most important aspects of CMSSW framework and build system

Code consists of 39 CUDA kernels organized in 5 “algorithm modules” scheduled
by the mock framework (about ~14kSLOC)

— Not all kernels are perfect fit for GPU, strategy is to maximize the code run on GPU and
minimize overheads (e.g. data transfers)

Raw pixel detector data (~250 kB/event) transferred to the GPU
— Optionally transfer tracks (~4 MB/event) and vertices (~90 kB/event) back to host

» Figure of merit is event processing throughput
— Disk I/O contribution is ignored

2% Fermilab

3 10/11/22 Matti Kortelainen | Status of the Patatrack use case

https://arxiv.org/abs/2008.13461
https://github.com/cms-patatrack/pixeltrack-standalone/

Kokkos version

T. Childers, M. Kortelainen, M. Kwok,
A. Strelchenko, Y. Wang

« Kokkos was the first portability layer the code was ported to

— Conversion done by migrating CUDA code piece by piece
First versions were very slow, performance has been improved greatly since then

— Hackathon last year with Kokkos developers was very useful

Current version considered complete

— Supports “advanced GPU optimizations”: asynchronous execution, multiple CUDA

streams, caching allocator

— Only test Kokkos version updates and their impact on performance

Experience and preliminary results documented in vVCHEP21 (arXiv:2104.06573)

Study was part of CMS’ decision process to choose between Kokkos, Alpaka, and
in-house “solution”

— Main reasons to reject

» Host-serial backend serializes all execution from concurrent calls outside of Kokkos

» On GPU slower than competition

4 10/11/22 Matti Kortelainen | Status of the Patatrack use case

2% Fermilab

https://arxiv.org/abs/2104.06573

Alpaka version M. Kortelainen, CERN team

» Alpaka version was developed mainly by CERN team

— Matti got the technical part started and reviewed code

— Conversion done by converting CUDA code piece by piece
» Current version considered complete

— At least what concerns performance

— Some prototyping supporting the Alpaka integration within CMSSW might still come
« Some highlights

— Supports asynchronous execution, multiple CUDA streams and caching allocator

— Can support both CUDA and HIP backends in the same build, and can run code of both
backends in the same process on a machine that has both NVIDIA and AMD GPU

« Likely not very useful for production, but demonstrates flexibility

2% Fermilab

5 10/11/22 Matti Kortelainen | Status of the Patatrack use case

Kokkos vs. Alpaka vs. native on GPU and CPU

Patatrack Preliminary

2500

Performance‘vs Numbgr of Threads

Throughput (events/s)
3
o
(=]

_.
(4]
S

1000

500

» - "%
Caching Allocator

—@— Native CUDA A10
Alpaka CUDA A10
—#— Kokkos CUDA A10

all backends implement a
caching memory allocator

8 10 12 14 16 18 20

Number of Threads / Streams

n
[41]
(=]

Patatrack Preliminary

Performance vs Number of Threads

Throughput (events/s)
S
(=)

oy

[42]

o
T

100

—@— Nalive CPU serial
Alpeka CPU senal

kink due to HyperThreading
effects on 10 physical cores

/' N

performance of a single job

in an otherwise unused machine

* From 3/9/2022 Compute Accelerator Forum

6

10/11/22

Matti Kortelainen | Status of the Patatrack use case

2 4 6 8 10 12 14 16 18 20
Number of Threads / Streams

2% Fermilab

https://indico.cern.ch/event/1073640/#2-patatrack

SYCL version

 I’'ve been told the porting is mostly done by the CERN team, but | have not seen
any code yet
— Can’t wait to review ~14kSLOC Pull Request...
— Also interesting to learn how they dealt with Eigen

2% Fermilab

7 10/11/22 Matti Kortelainen | Status of the Patatrack use case

std::par version J. Esseiva

Different porting approach

— Start from CUDA Unified Memory version, convert code piece by piece to std::par

— Use NVIDIA’s std::par implementation (nvc++)

3 modules left to port to std::par

— RecHits, Tracks, Vertices

— Data structures, memory management, framework architecture, tests have been ported
nvc++ still very new, encountering a lot of bugs

— Link error with Eigen when used in device context

— Compiling with optimizations turned on fail for some CUDA kernels

— Atomic operations (e.g. min), implementing it in terms of CAS operation doesn’t work in
device contexts

Expect first completed version to be slow
— More kernels, unified memory, more memory traffic, no asynchronous execution, ...

2% Fermilab

8 10/11/22 Matti Kortelainen | Status of the Patatrack use case

OpenMP Target status

M. Dewing

« Different porting approach

— Start from serial version, decorate code piece-by-piece with OpenMP pragmas

« So far ported various unit tests and clusterizer. Currently working on vertex fits.
* Encountered various problems

— LLVM Compiler crash, apparently caused by running out of stack. Increased stack size.
— LLVM and OpenMP code bases evolve rapidly

» Encountered another crash in LLVM 15, apparently fixed in main branch
— But random updates from main branch may or may not work

— Eigen: Had to find the right preprocessor macros to turn off many optimized and
processor-specific features (vectorization, CPU id, CUDA, ...)

« Still needs some code changes in Eigen to compile on NVIDIA
« AMD GPU compilation still results in a compiler assertion failure in Eigen

Jt H
3¢ Fermilab
9 10/11/22 Matti Kortelainen | Status of the Patatrack use case

OpenMP Target status (2) M. Dewing

* Multiple compilers
— AMD AOMPCC is a script that drives clang
» Doesn’t recognize . cc suffix as C++

 Script will not pass through arguments that take values (eg. -isystem /usr/include)
— NVIDIA HPC SDK
» Does not support critical sections in GPU code, need to convert to atomics

» Dependency file outputs (-MMD) are named differently than GCC. Must specify file name
(-MF)

— Intel One API (icpx)
» SPIRV does not allow zero-sized arrays

2% Fermilab

10 10/11/22 Matti Kortelainen | Status of the Patatrack use case

OpenMP Target status (3) M. Dewing

» Able to use OpenMP Target offloading from an application that uses TBB for
“outermost-loop” concurrency

 Very first performance look, only on raw-to-cluster module, on a laptop
— Serial: 30 events/s
— OpenMP (using critical sections): 6 events/s
— OpenMP (using atomics): 25 events/s
— Data is copied to and from GPU on each kernel call
— Used first critical sections where CUDA version uses atomics
 Just to get something running correctly

2% Fermilab

11 10/11/22 Matti Kortelainen | Status of the Patatrack use case

Other versions

» Serial (M. Dewing, M. Kortelainen)

— Original CUDA code came with an in-house hack to compile the CUDA code on CPU for
some part of the code

— First Serial version was to use that hack for all code, codebase still has CUDA look&feel

— Mark reduced the CUDA look&feel for Serial version to be a better base for the OpenMP
version (using Comby tool to express the code transformations)

 Direct HIP (M. Kortelainen)

— Straightforward conversion from CUDA with hipify-perl to have a native version for AMD
GPU

— Can’t be used for HIP-on-NVIDIA because of Eigen not supporting that mode
» CUDA with Unified Memory (M. Kortelainen, M. Kwok)

— Demonstrate the cost of unified memory (40-45 % reduction in throughput)
— Reported in vCHEP21 (doi:10.1051/epjconf/202125103035)

2% Fermilab

12 10/11/22 Matti Kortelainen | Status of the Patatrack use case

https://comby.dev/
https://doi.org/10.1051/epjconf/202125103035

Outlook

* Performance measurements at JLSE
— Still in setting up and testing phase

— Compare all possible cases on CPUs and NVIDIA, AMD, Intel GPUs
» How to get public Intel GPU results?
— Results to be reported in CHEP23

* Need to go through CMS, as we did for vCHEP21

« Additional manpower for profiling could be useful to answer some remaining
mysteries

— Why Alpaka (and Kokkos) versions yield better performance than serial version on CPU?
— Why Kokkos is so much slower than Alpaka and native CUDA?

Jt H
3¢ Fermilab
13 10/11/22 Matti Kortelainen | Status of the Patatrack use case

